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The continuity equation for electromagnetic (EM) energy
flow is used to describe radiation flow in the transport

regime. The geometric-optics limit of the EM continuity

equation is the transport equation, which depends on the

time t, a position variable T, and parametrically on a unit

~

vector in the ray direction kK, making it an extremely

difficult equation to implement computationally. The EM

continuity equation however depends only on t and r. An
average with respect to a manageable number of EM field
polarization directions, which is needed to describe the

flow of unpolarized radiant energy, gives an energy density

”~~

which is continuousy distributed in k, thereby eliminating
"ray effect” distortion, which occurs because the transport

equation, for computational reasons, is discretely

distributed in '12_



In numerous applications radiation transport through a material
is dominated by emission, absorption, and re-emission, while
scattering is down by many orders of magnitude and can be ignored.

The transport equation in such regimes is [1],
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where | is an energy density, k is a unit vector in the ray direction,

K5 is an absorptive opacity, and S is a suitably normalized emissive

-~

source isotropically distributed with repect to k. Although
deceptively simple in appearance Eqg. (1) is extremely difficult to

implement computationally because of its parametric dependence on

the ray direction E. Formal solutions are of little use because of
the nonlinear dependence of the source S on the energy density |
through the material temperature. Thus in practical applications the

equation must be solved numerically on discrete grids in time and

space, as well as in 3 (The source and opacity also depend on the
magnitude of the wave vector, which is w/c for radiant energy,
where o is the frequency, which also must be discretized.)

Fig. 1 shows an example of the use of Eq. (1) to describe radiation
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transport, where the principal inaccuracy is the "ray effect" or

lumpy distribution in the free space region outside the region of

emission due to an insufficient number of values of k, The details of
the numerical procedures used in all of the calculations in this paper
can be found elsewhere [2-3].

Obviously it should be uunnecessary to resolve the problem into a
set of ray directions in order to describe the physics of this
situation because, in absence of scattering, there is no preferred
initial or "in" set of directions for the rays. The final or “out"
direction occurs, from the point of view of wave optics, as we shall
see below, through finding the geometric-optics limit of Maxwell's

theory of wave propagation, in which the propagation loses its

dependence on w/c and depends only on k, In this paper however we
show that one can make good use of the loss of dependence on w/c

by solving Maxwell's equations directly and representing a
continuously distributed k implicitly and automatically through the

transverse dependence of k on the field polarization directions,

which is guaranteed by Maxwell's equations. In the problems of
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interest of course the radiation is not polarized; thus it is necessary
and, from the satisfactory nature of our results, sufficient to
average the energy density over all possible polarization directions
of the Maxwell fields to describe the flow of unpolarized radiant
energy. Hence the "lunch" is not free. The discretization of the
problem is now in time and space and in the polarization directions
of the Maxwell fields; however it turns out that the polarization

average can be achieved with a fairly modest number of discrete

polarization directions. Furthermore, since K is never discretized
the ray effect distortion disappears (Fig. 2). Finally we recall that
it is only the independence of the propagation on w/c which permits
us to solve Maxwell's equations at all since otherwise one would
have to resolve the fields on the scale of w/c, typically in the
regime of short wavelengths, such that it would be impossible in
the problems of interest to describe the transport of radiation over
millions or billions of these wavelengths. In other words the
continuity equation for electromagnetic (EM) energy flow can be

used to simulate the average energy density directly - the energy

density of Eq. (1) integrated over the solid angle defined by dk and
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divided by 4xn - as shown in Fig. 2, without first resolving the motion
into a set of k directions.
The equations for our model [4-6] are,

lou 2

——t V-(Exﬁ)=-1cau+8

C ot (2a)
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Maxwell's equations for the electric, magnetic fields E, H have been

manipulated in the usual way [4] to arrive at a continuity equation

for the energy density u = 1/2(E‘2 + H2). This form is desirable
because then we can then sensibly introduce a phenomenological
emissive source S, which has no counterpart in the equations for the
fields themselves. Eg. (2a) is the result. The model defined by

Egs. (2) does not use Maxwell's equation for the magnetic field,

VXxE=-——2
¢ ot , (3)

other than to derive Eq. (2a) without S. The model does use
Maxwell's equation for the electric field [Eq. (2b)] because it
describes the absorption of the electric field in the material [5-6].
We infer the magnetic field for use in Egs. (2) from the energy
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density u in a way which we describe below.
First however we briefly review how Eq. (2a) reduces to Eq. (1) in
the geometric-optics limit of Maxwell's equations [7]. One uses the

Fourier representations for the fields,

= iGer-on)
E=¢€e +cc (4a)
H=hei(k'r-‘m)+ cC . (4b)

From Eq. (3) we infer that,

, (5)

where the envelopes of the fields in Eqgs. (4) are assumed to be

slowly varying in space and time on the scale of (o)/c)'1 and o~}
respectively. Using Egs. (4) and Eq. (5) (and its complex congugate)

in Eq. (2a) and the vector identities,

*
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where the term <€ and its complex conjugate are negligible on the
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slow scale [7] since in absence of free charge V:D=0 where

D=E+4nP js the displacement field due to the material polarization

field P [5-6],
- ikc T o
P=—2 g o
4w ) (7)

These are the standard results for the geometric-optics limit [7].
Substituting Egs. (4) into Eqg. (2a) and using Egs. (5) and (6) and their
complex conjugates, one arrives at Eq. (1), where the energy density

is interpreted as,
E

I=EE€+cc _ (8)

Thus the transport equation, which in fact is just a‘ conservation

of mass equation which applies generically to particle transport, is
consistent with the geometric-optics limit of Maxwell's wave
theory, in which the propagation is described as the straight-line

transport of a light ray, whose intensity is given by Eqg. (8), in the
direction of E.

Now let us solve Egs. (2) in this limit directly, without using the

substitution of Eqgs. (4). At first glance this may appear to be
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impossible because, according to Egs. (4), the fields themselves, but
not their envelopes, are rapidly varying in space and time. However

in a sense Eqgs. (4) are misleading because the rapidly varying carrier

waves contain more information, namely the wavelength 2n(m/C)'1,
than we need to describe the problém posed phenomenologically by
the emissive source in Eq. (2a), S, which is just a radiant energy
distribution, usually modelled using the Planckian function [1],
which exists on the slow scale. From this point of view Egs. (2) are
already coarse-grained. Indeed the slow-scale equation, namely the

transport equation given by Eq. (1), also contains an excess of

information, namely the "light ray" direction E, than posed by the
phenomenological source, in agreement with our original surmise
that this level of resolution is excessive to describe a physical
situation in which there is no initial set of preferred directions,
either from the source or from "in" scattering. Thus within such a
restricted situation, which however includes numerous practical
" applications, Eqgs. (2) seem physically appropriate to describe the

motion or flow of radiant energy in the so-called transport regime.
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The model given by Egs. (2) is implemented as follows. The

source in Eq. (2a), S = x4 B, where B is the Planckian function [1],

turns on at initial time allowing the average energy density, u, to
evolve from an initial zero value over an increment of time dt.

In this model the advection of the radiation [second term on the left
side of Eq. (1)] is described by the divergence of the electromagnetic
(EM) flux divided by c¢ [second term on the left side of Eq. (2a)]. This
effect and the absorption are ignored during the first temporal
increment and are calculated for each subsequent increment using
the information from the previous time step. The electric and
magnetic fields needed to calculate the EM flux are calculated as
follows. Since Eq. (2a) is an equation for the temporal evolution of

the electric field, the magnetic field is inferred from a knowledge
of u = H2, where we have used Eqg. (5) and Eq. (6b) to infer that H2 is

sensibly equal to E2 in our regime. The three components of the
magnetic field are calculated from the square root of u, where the
choice of their amplitudes will be described shortly. Finally these
values of the magnetic field are substituted into the right side of Eq.
(2b), which is solved for the E-field components. In the next
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temporal increment Eq. (2a) is advanced and the information
calculated from the previous time step is used to calculate the
divergence of the EM flux divided by ¢ and the opacity term. In
optically thick problems it is necessary to use an implicit
édvancement algorithm for the opacity terms in Egs. (2). Such an
algorithm can be constructed using the methods described previously
[2].

The amplitudes of the H-field components are chosen as follows.
In the 2D problem considered here (Figs. 1-3) the motion is in the
x-y plane. EM transversality means that unpolarized energy flow in
this plane can be simulated by picking a series of H components
weighted from zero to one on the positive axis perpendicular to the
plane (or by symmetry from zero to minus one on the negative
perpendicular axis). The amplitudes of the in-plane H components
are then chosen at every time step from a random number generator
in the range of values from minus one to plus one. The three
amplitudes of the vector field are then normalized so that the sum
of their squares is one, in order to satisfy the magnitude condition

Hy2 + H2 + H2 =u.

y
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The result is shown in Fig. 2, which is an average over twenty-

one H, polarization amplitudes from zero to one. The average over

eleven amplitudes gives a result which agrees with the result of
Fig. 2 to better than 1%. Thus the method converges rapidly for a
modest number of discrete amplitudes; it is necessary only that this
number spans the range of possible amplitudes from zero to one,
subject to the normalization condition given above.

Other schemes have been tried and réjected as containing bias.
For example use of fixed rather than stochastic in-plane components

(Hy and Hy) leads to results which follow fixed two-way ray

directions, up and down, left and right, or diagonally to any two
opposite corners. Such a scheme appeared have all of the bias of ray
transport and to require an average over a large number of amplitude
choices to beat down the bias. At the opposite extreme all advection
vanishes if the amplitudes of all three components of H are chosen

using a random number generator.

In summary the scheme of a discrete representation of H, and a

stochastic representation of Hy, Hy gives an effectively continuous
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representation of directed energy in the x-y plane, such that the ray
effect of transport theory (Fig. 1) is absent (Fig. 2). Since the in-

plane amplitudes are generated at each time step, it is necessary to

robust with respect to the coarseness of this discretization.
Evidently the generalization to three dimensions would require three
such discrete sets for the three planes of the motion.

Although there are small quantitative differences in the
distributions shown in Figs. 1 and 2, the total energies obtained by
integrating the average energy densities over space are in close
agreement, as shown in Fig. 3.
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Figure Captions

Fig. 1 Energy density from Eq. (1) averaged over the solid angle

S~

defined by dk according to the SN scheme for N = 8. A square region

of emission (x5 = 5 cm ! and B = 1 for a source S = kg B )' between
the coordinates -1.0, -0.6 cm and 0.6, 1.0 cm on the x and y axes
encloses a region of absorption (kg =5 cm1, B = 0) and is
surrounded by a region of free space (Ka‘= 0, B = 0). The calculation

uses a 64 X 64 spatial grid and 1001 points in the ct dimension for a

maximum ct of 2 cm.

Fig. 2. Average energy density from Eqgs. (2). Other details are the

same as in Fig. 1.

Fig. 3. Total energy: energy density of Fig. 1 (dashed) and Fig. 2

(solid) integrated over all space.

page 14



3.00

2.00

1.00

x (cm)
(=]
[=4
Q

-~1.00

-2.00

-3.00

at-41278-u-abr-01

IlllllllllllllIllIllJ_lllILllll'Jlllllllllllllll||||lllI!ILLLI

]Ilelllll'llllllljl‘llllllllllllllllllllIllLLlllJ"!lllllll

Illllllll'lllllllillllllllllll

lllllll‘Illllllll1l|lllllillll

-3

‘Ii‘\llf1|“ll\l|ll‘llll[llIll“llllITIllllil\]llll\lllllllll

.00

-2.00

-1.00

0.00
y (cm)

1.00

2.00

3.00

Levels:

CTIOTMMOOW>

-0.000

0.094
0.191
0.288
0.384
0.481
0.577
0.674
0.770
0.867



3.00

2.00

1.00

x (cm)
[=]
[
o

-1.00

-2.00

-3.00

at-41278-u-abr-03

llIlllllllIlllllll]l!llllll!Illllllllllllllllllllllllllllllll

lllIllllll]llllllllllll!llllllll|lIlll]llllllIIII!IIIIII!Ill'

'IIIIIIIIIIIrllIlllllIIllllllIlllllllllllllll(lllllIlllllllll

IllllllllllllllllllllllIlllllll|llllllllllIllllllllllllllllll

-3.00

-2.00

-1.00

0.00
y (cm)

1.00

2.00

3.00

Levels:

CTIomMMmMoOOm>

0.000
0.101
0.202
0.304
0.405
0.507
0.608
0.710
0.811
0.912



Energy (arb. units)
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